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A train of internal gravity waves in a stratified liquid exerts a stress on the liquid, 
and induces changes in the mean motion of second order in the wave amplitude. 
In  those circumstances in which the concept of a slowly varying quasi-sinusoidal 
wave train is consistent, the mean velocity is almost horizontal, and is deter- 
mined to a first approximation irrespective of the vertical forces exerted by the 
waves. The sum of the mean flow kinetic energy and the wave energy is then 
conserved. The circulation around a horizontal circuit moving with the mean 
velocity is increased in the presence of waves according to a simple formula. The 
flow pattern is obtained around two- and three-dimensional wave packets propa- 
gating into a liquid a t  rest, and the results are generalized for any basic state of 
motion in which the internal Froude number is small. Momentum can be associ- 
ated with a wave packet equal to the horizontal wave-number times the wave 
energy divided by the intrinsic frequency. 

1. Introduction 
Propagating waves in any medium normally transfer both energy and momen- 

tum. The concept of wave energy and its flux are well known [for a discussion 
in an arbitrary dispersive medium see Bretherton & Garrett (1968)], but the role 
in a general theory of wave momentum and radiation stress is still obscure. The 
momentum carried by a quantum of electromagnetic radiation, and the pressure 
exerted by an intense beam of it, are very familiar. Radiation pressure has 
observable consequences in other contexts. For example, the change in mean sea 
level due to swell breaking on a seashore has been discussed by Longuet-Higgins & 
Stewart (1962). In  general, the mean stress exerted by a wave on a material 
medium is a tensor, and in particular cases it is normally straightforward to 
evaluate it for a sinusoidal propagating disturbance in terms of the wave-number, 
frequency and the square of the amplitude a. At least for surface waves on water 
(Longuet-Higgins & Stewart 1961), sound waves and Alven waves (Garrett 
1968), the work done by this stress against the mean velocity accounts satis- 
factorily for the changes in wave energy for a wave train propagating in a shear 
flow. Such changes must be consistent with conservation of wave action (Brether- 
ton & Garrett 1968). However, a general method of derivation of these relations 
is not yet available.$ It is also not clear how far the radiation stress can be 

t On leave from Department of Applied Mathematics and Theoretical Physics, Univer- 
sity of Cambridge, England. 

$ Progress has been made with this and will be reported elsewhere. 
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ascribed to the transfer with the group velocity of momentum carried by the 
wave, nor how that momentum is embodied in associated mean motions of order 
a2. Tantalizingly suggestive results may be obtained for special cases, but 
apparent exceptions are also available. 

Some of the difficulties which can arise are illustrated by internal gravity 
waves. The equations of motion for a non-dissipative Boussinesq liquid in which 
t'he density is p (x, t )  may be written 

where 

D -u+Vp+m = 0, Dt 
v.u = 0, 

DB 
- = 0 )  Dt 

_ -  - -+u.v, 
Dt at 
D a  

n is unit vector vertically upwards, B is a buoyancy force defined as g ( p  -p* ) /p * ,  
where p* is some mean reference density (the inertial density) hereafter taken as 
unity, and p*p is the difference between the true pressure and the hydrostatic 
value in a liquid of uniform density p*.t Defining now Eulerian mean values U, p ,  
CT and small fluctuations with zero mean ul, ply c1, the equations of mean motion 
are D -  -u+Vp+an = -V.U,U,, Dt 

v.u = 0 ,  

- 

(1.4) 

- B =  D -  -v.qZcr,. 
Dt 

Thus, in addition to the Reynolds stress tensor uii, acting as a surface force on 
the mean flow, there are also changes in the mean buoyancy 5. 

For a slowly varying wave train (in which the amplitude a, wave-number k and 
frequency w vary only slightly over a wavelength and period), the divergence of 
the Reynolds stress may be evaluated approximately by inserting at  each point 
in space the value of uii, computed locally as if the wave were strictly sinusoidal. 
The resulting divergence is then proportional to gradients of a2, k, w. The buoy- 

? The use of the Boussinesq approximation can sometimes give misleading results, 
even when the fractional range of density, 6, within the region of interest is very small. 
Long (1965) and Benjamin (1966) have shown how the structure and existence of solitary 
and cnoidal waves of arbitrary large horizontal wavelength h are seriously altered if the 
variations of inertia of the fluid are ignored. However, the vertical scale of such waves is 
much smaller than the horizontal scale, and their structure is governed by a balance 
between the slight variations of phase velocity with wavelength and the small non- 
linearities associated with the amplitude a not being infinitesimal. It is then perhaps not 
surprising if the conceptual process of holding variations in density fixed while h -+ co, 
a2 + 0 and then allowing 6 -+ 0 does not yield the same result as letting 6 + 0 at the outset. 
In the present problem no such delicate balance is involved, and the same results may be 
obtained by retaining the full density variations till the penultimate step, provided the 
vertical scale of the wave packet is small compared with the density scale height. This 
is best treated within the framework of the general theory of radiation stress, referred to 
in the previous footnote. 
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ancy flux uiil ,  on the other hand, vanishes for a uniform train of internal gravity 
waves, because fluctuations of velocity and density are precisely out of phase. 
However, for a slightly non-uniform wave there is a small flux, and it is easily 
seen that the body forces due to the associated change in 5 are comparable to the 
divergence o f  the surface forces u i i .  From detailed calculations it appears that 
such changes in 5 cannot in general be related to the instantaneous state of the 
wave train. Although V .uI(T1 may be expressed in terms of the second derivatives 
of a2, k, w ,  equation (1.6) is not integrable. Thus at  first sight it would seem that 
the effect of the waves on the mean flow cannot be summarized as a stress alone, 
but must include a body force which depends in a complex manner both on the 
present state and on the past history of the waves. 

This statement is overpessimistic. It will appear that the role of the buoyancy 
flux and the vertically acting Reynolds stresses is dynamically secondary, as 
they are offset by changes in density associated with very small vertical mean 
displacements. This conclusion follows from a consideration of the space and 
time scales of the mean motion implicit in the concept of a slowly varying wave 
train, and is associated with the statement that the internal Froude number is 
very much less than unity. Qualitative restrictions must be placed on the mean 
velocities which can be permitted, namely that they are effectively horizontal 
and determined independently at  different levels. Then for most purposes a 
knowledge of the horizontally acting stresses is sufficient, and several general 
results follow concerning the form of the radiation stress tensor, conservation of 
energy, Kelvin’s circulation theorem, and the momentum associated with a wave 
packet. The latter is the horizontal part of k/(o - u. k) times the wave energy, 
although it may be realized as mean motion of the fluid distributed over consider- 
able distances from the wave packet. 

2. A quasi-sinusoidal wave train 
2.1. Linearized plane waves 

We are concerned with the additional motion of order a2 induced by a wave in a 
medium of which the basic velocity is u, (x, t ) ,  so that 

- U = u0+U2+O(a3),} 

= co+o,+0(a3).  
An important special case is when the medium is basically at  rest with uniform 
stratification 

where the Brunt-Vaisiila frequency N is constant. When the equations of motion 
(1.1)-(1.3) are linearized about the basic state (2.2), they have solutions in the 
form of plane transverse sinusoidal waves of frequency 

(2.2) u, = 0, Vco  = - N2n, 

w = N(0) Ikx nl /I kl. (2.3) 

The superscript (0) has been attached to N to make these formulas formally 
consistent with the scaled variables which will be introduced in 52.2. In  the 
meantime, it may be ignored. The group velocity c is in the plane of the wave 

50-2 
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front in the direction of greatest slope and is inversely proportional to 1 k I .  
Taking Cartesian axes so that Oz is vertical and k lies in the 0 x 2  plane, we have 

k = (k, 0, m), o = W0) I k I/.J(k2+m2) (2.4) 

and 

where sgn k = k 1 according as k 0. The wave energy density is 

E = iu", + $ ( 1 / N 2 ) q ,  (2.6) 

where the average indicated by the overbar is over the ensemble of realizations 
of the wave train subject to arbitrary changes of initial phase. The Reynolds 
stress tensor becomes 

na2 0 - km 

R = i i i i - - - [  1 1 - k 2 + m 2  E 
0 0 (I2], -km 0 

(2.7) 

whereas the buoyancy flux vanishes 

s = iqcl = 0. (2.8) 

The first two rows R, of (2.7) describe the horizontal force exerted by the 
Reynolds stress. Comparison with (2.4) and (2.5) shows that they may be written 

E R, = 0 k, C, 

where k, is a two element column vector describing the horizontal part of k. The 
same is not true of the third row, which is 

k2 E 
m o  

R, = ---nc. (2.10) 

Also, if u, is not zero but uniform, (2.3)-(2.9) continue to hold exactly, pro- 
vided the frequency o and group velocity c relative to a fixed observer are 
replaced by the intrinsic frequency and group velocity 

W+ = ~ - ~ o . k ,  C+ = C--0. (2.11) 

2.2. Xcale analysis 
If the basic state is not uniform, strictly plane waves are no longer possible, 
but we may consider a quasi-sinusoidal wave train, in which there is at  each point 
a fairly well-defined dominant amplitude and wave-number, which, however, 
vary from place to place and time to time on scales much larger than those for 
the wave (a wavelength and wave period divided by 2n). The arguments of this 
paper are clarified if we introduce here a formal expansion in terms of a small 
parameter B. We will suppose that the vertical, horizontal and group velocity 
scales for the wave train ( H ,  L and G respectively) are order unity, whereas the 
wavelength and wave period are O ( E ) .  Implicit also is the assumption that the 
slope k/m of the wave fronts is H / L  and is order unity, although the argument is 
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easily modified (without altering the conclusions), when this ratio is small. We 
set 

(2.12) I u1 = B{a (iiio) + sii:O) + . . .) exp [i (B-18 + &)I}, 
a, = B{ae-l(i?io)+sa~l)+ ...) exp [i(~-l8+6)]}, 

where the amplitude a(x ,  t )  and the phase function 8 (x, t )  vary on scale unity. 
6 is an arbitrary additive constant in the phase. The lowest-order structure 
functions fii0) (x, t ) ,  $io) (x, t )  are those appropriate to a strictly sinusoidal wave 
in a uniform medium defined by the local values of u,, N 2 .  Spatial gradients of 
u,, a, are dominated by the term s-lO in the exponent of (2.12)) and they are 
0 ( E - , )  larger than u,, a, themselves. The local frequency and wave-number are 

E - ~ W  = -E-l(aO/at), E-lk = ~ - 1 V 8 ,  (2.13) thus 
respectively. 

This picture implies that the Brunt-VaisSila frequency N (which is comparable 
to the time frequency 8 - l ~  of the wave) must be 0 ( E - , ) ,  although the space and 
time scales of u, are at least those of the wave train. Thus we are forced to con- 
clude that, if the concept of a slowly varying wave-train of internal gravity 
waves is to be consistent, the internal Froude number I u, I2/N2H2 of the basic 
state must be very much less than unity. This implies important qualitative 
restrictions on the permissible velocities u,, which we will now investigate. To 
avoid excessive verbiage, we will envisage the horizontal, vertical and time scales 
for u, as H ,  L and H/C respectively, the same as those for the wave train. This 
implies I u, I / C  < 0 (1). For some applications the scales may be larger than this 
and for safety the argument should be reworked, but in most cases the con- 
clusions are strengthened. 

Taking the curl of equation (1.4) we see that V a  x n is order unity in B,  even 
though Va,  itself must by O(E-2). Thus 

a. = ap ( z )  + E 2 a p  (x, t )  + . . . 
and from (1.6) where 

u, = up (x, t )  + € 2 U p ( x ,  t).. ., 
(2.14) 

who) = uho) . n = 0.  (2.15) we have 

Thus the vertical velocities in the basic flow must be two orders of magnitude 
smaller in E than the horizontal ones, and the latter (by (1.5)) must be quasi- 
non-divergent. Expanding also 

p ,  = €-2{pp(Z) +“2pp(x, t )  ...} (2.16) 

the equations of motion (1.4)-(1.6) for the basic state reduce to 

(DO/Dt) u, + Vhph2’ = 0, (2.17) 

(2.18) 

v , . u p  = 0, (2.19) 

(Do/Dt) v p  = - N(o)2wp, (2.20) 

where Vh = V - n(a/az) is the horizontal part of the operator V. 
Inspection of (2.17)-(2.20) shows (2.17) and (2.19) (with appropriate boundary 



790 F. P .  Bretherton 

conditions) form a closed set independent of (2.18) and (2.20). The horizontal 
motions at different levels are essentially decoupled, the pressure perturbation 
pi2) being determined separately at  each level as a consequence of conservation 
of vorticity about a vertical axis. Then (2.18) determines cb2), and (2.20) wh2). 
This dynamical rkgime is a necessary consequence of the whole concept of a 
slowly varying train of internal gravity waves and must be continually borne in 
mind in the sequel. 

With the definitions (2.13) and the expansion (2.14) for go, it is easily seen 
that, correct to lowest-order in 6 ,  the velocities (2.12) satisfy the linearized 
equations of motion for plane waves and the dispersion relation (2.3) with w 
replaced by w+ according to (2.10). At each point x, t the local values of w-t, k, 
N(O)(z) are appropriate. The factor e-l in v1 ensures that i3i0) is formally of order 
unity. It should be noted that the Brunt-Vaisala frequency N(O) is a function of 
x only. It is essentially inconsistent to suppose that N2 depends on horizontal 
position on a scale comparable to the vertical scale H of the basic motion. 

One loophole does remain in the argument leading to (2.15), pointed out by 
Garrett (1968). e&O)(z) in (2.14) could be a function of time, implying vertical 
velocities wlp)(z, t )  which are horizontally uniform and requiring a uniform hori- 
zontal convergence to match. In  an unbounded fluid, this convergence would 
imply u, 9 C at large distances, violating the assumed scales on w, k. Never- 
theless, moving vertical boundaries could be imposed to preserve consistency. 
This somewhat pathological case is considered in 54.2. 

2.3. Second-order mean motions 
Associated with the first-order perturbation velocities (2.12) are second-order 
ones } (2.21) 

u2 = L % { U ~ ( Q ~ ~ ) + C . Q ~ ~ ) +  ...I exp [2i(e-10+8)l}+ii2, 

c2 = W{a2~-1(i3&~)+&&~)+ ...) exp [2i(~-1O+6)])+3,. 

The sinusoidal term here is the first harmonic of the fundamental oscillation, 
forced locally by quadratic non-linearities (for the transverse waves considered 
here it happens that OLo) vanishes identically). ii2(x, t )  on the other hand, is the 
slowly varying second-order mean velocity which is of primary interest to us. It 
is the average of u2 formed by integrating over a period with respect to initial 6 
and dividing by 27r. It may also be regarded with an error smaller than any power 
of 6 ,  as the running space or time average formed by weighting u2 with some 
suitable normalized infinitely differentiable ‘ window ’ function P which vanishes 
for arguments outside a certain range 

U2 (x) = P { d (  x - x’)} u2 ( x’) dx’ F { d ( x  - x’)} dx’. (2.22) s 
Equations (1.4)-( 1.6) now become, to lowest-order in E 

Dt~2+(ii2.V)uo+Vp2+52n DO - = - V .  R,  
v.a2 = 0, 

DO -e2-e-2N(0)2(z)E2 - = - v . s ,  
Dt 

(2.23) 

(2.24) 

(2.25) 
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where the buoyancy force 

s = €-1upQp + (Upf7.p +up&'} + 0 (a%) (2.26) 

is at first sight formally of order e-l. However ul'), &) havepreciselythestructure 
appropriate to strictly sinusoidal waves, so by (2.8) the first term vanishes. The 
wave energy density E is, with the present scaling, also O(a2eo), so the right-hand 
side of (2.23)-(2.25) is everywhere of this order. 

The appearance in (2.25) of the factor c2, shows that, when w2 is expanded in 
-(O) = - 3 0 ) .  n = 0. (2.27) powers of E ,  
w2 u2 

Thus the forced motion U 2  is subject to precisely similar dynamical restrictions 
as the basic flow, i.e. it is essentially horizontal, with the flow a t  different levels 
independently determined, and the small vertical velocities just enough to ensure 
continual hydrostatic balance. Only those components R, of the Reynolds stress 
tensor which can exert a force in the horizontal direction are of real significance, 
and using (2.9), the dominant equations governing the forced second-order mean 
motion are 

D , U i o ) + ( ~ ~ o ) . V ) u o + V , ~ i 2 )  = - V .  (2.28) 
Dt 

v .up = 0. 

These form a closed set. Ti2), Eh2) follow from 

and 

(2.29) 

(2.30) 

(2.31) 

but these equations are essentially secondary, only their orders of magnitude 
being necessary t o  verify the consistency of (2.28) and (2.29). The lather will form 
the basis of our subsequent development, although to avoid needless repetition 
the superscripts will henceforth be omitted. 

2.4. Kelvin's circulation theorem 
We now derive an important &st integral of (2.28). If we consider fluid particles 
moving horizontally with the total mean velocity uo +is,, the circulation round 
a circuit r moving with the same velocity is 

auoj+u .23 asi U M  + u.2,  as, + - u2, + 5,j ,,uoi + 5 '- 
= i , " = O  4 E- i 23 axi O3 axi 'I I a 

(2.32) 

= -$\(Ek,(c-uo)i)dsi, ax W+ (2.33) 
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where the basic equation of motion 

( D O / D t )  uO -k vh PO = 

has been used to eliminate the O(ao) terms, and the fact that the integral of a 
gradient round a closed circuit vanishes. All terms of order a4 have been omitted. 

Now it was shown by Bretherton & Garrett (1968) that  when a quasi-sinusoidal 
wave train moves in a slowly varying medium the quantity E/w+ is conserved, i.e. 

; ( $ + v . ( g c )  = o .  (2.34) 

It is the complete group velocity c which enters (2.34), not the intrinsic value 
C+ = c - u0. Thus 

(2.35) 

Also the wave-number k varies in a systematic manner, according to the spatial 
gradients of the parameters N ,  uo which enter the dispersion relation. Because 
N is independent of horizontal position, 

( a p t )  k, + ( c . V) k, = - (VU,) . k,, (2.36) 

so that (2.37) 

From (2.33), (2.35) and (2.37), and remembering that to a sufficient approxima- 
tion for the right-hand side 

we have 

i.e. 

where C, is a constant, the circulation associated with 
waves arrived there. 

(2.38) 

(2.30) 

the basic flow before the 

Equation (2.39) is a statement of Kelvin's circulation theorem, as applied to  
the mean flow driven by the waves but disregarding the motion of fluid particles 
on the scale of the waves themselves. Taken with (2.19) and (2.29), it completely 
fixes the mean motion. It may be derived also from the constancy of circulation 
round a circuit consisting of real material pwticles, all of the same density. 
Originally horizontal, when waves arrive the circuit is distorted on scale 0 (6-1) 

and the velocities are also altered, but it may be shown directly that, correct to 
order a%O, the extra circulation over and above that due to the horizontal mean 
velocities round the horizontal projection of the time circuit is 

E 
- kh2.  d s .  
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2.5. Conservation of energy 
If we consider a horizontal flow uo+B2 satisfying (2.28) and (2.29) exactly, it is 
easy to derive the equation, correct to order a2, 

(a/at){g ~ ~ , + ~ , ~ ~ } + v . { ~ ~ , + u ~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ + p ~ ~ ~ + p ~ ~ }  
= -V . (u, . R,}+Vuo : R, 

(2.40) 

The second term on the right-hand side is the inner product of the rate of strain 
tensor with the Reynolds stress tensor. Now since the dispersion relation 

w = uo . k +No){( n x kl/l k I>, (2.41) 

explicitly involves time and horizontal position only through u, (x, t ) ,  we have 

($fc.V)(u-u,.k) = +u,.(Vw),-k. 

= k"+u.- auoi k 
ax, 

= - (auOi/axj) k,cj+. (2.42) 

Thus the last term on the right-hand side of (2.40) may be written 

and we have 

a 
.(B I Uo+U2 l2+E1 

+ V . ( (u, + U2) (4 1 u, +ii2 l 2  + E +pf) +pi2)) + - c+E = 0. (2.43) 

This expresses conservation of total energy, allowing for an interchange between 
the wave and the mean flow. The apparent flux of wave energy relative to the 
local fluid is 

w+ " I  
(w/w+) Ecf, 

rather than Ec+. The difference (u, . k) (E/w+) C+ is accounted for by the flux 
of wave momentum in a velocity u,. It should be noted that there is no potential 
energy term in (2.43) corresponding to vertical displacements of order €2 associated 
with the mean flow in the stratification of order c2. Although changes in 
potential energy are implied by higher-order approximations to (2.28) and (2.29), 
these are not available for conversion into wave energy or kinetic energy of mean 
motion, and they do not figure in the total energy as computed this way. 

3. The mean motion induced by wave packets 
3.1. Wave packets 

A wave packet is a quasi-sinusoidal wave train of which the amplitude a(x, t )  is 
negligibly small everywhere outside a moving volume V across which the fre- 
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quency and wave-number may be regarded as effectively uniform. Viewed from 
the scale of variation of the medium, the wave packet may be regarded as a point, 
but it still contains enough wavelengths for the analysis of the previous section 
to  be applicable. 

However, this definition at once raises a difficulty because the scales for the 
variation of amplitude are now smaller [say 0 (€91 than those of the frequency 
and wave-number and other properties of the basic state. Thus, strictly speaking, 
the previous analysis only tells us how the packet moves and drives the mean 
flow for times only as long as it takes to move its own diameter, i.e. 0 (€4)) whereas 
we really need to be able to follow it for a time of order unity. That this point is 
not trivial follows from noting that small differences [0 (€41 of group velocity 
across the packet can cause after time unity a radical redistribution of wave 
energy within the volume V ,  so that the packet does not propagate without 
change of shape. However, it is plausible that the total wave energy within V 
varies in proportion to the intrinsic frequency o+, consistent with conservation 
of wave action (2.341, and the mean motions associated with the packet may 
still be computed over this time scale (2.28) and (2.29). Nevertheless, to verify 
these statements requires a detailed analysis of error terms which have been 
dismissed in 5 2. 

This problem disappears if we do not try t o  consider an individual wave 
packet on its own, but rather regard it as a brick out of which continuous wave 
trains are constructed by juxtaposition. Equations (2.28), (2.29) and (2.34) are 
linear in ii2 and E, and the right-hand side has the form of a divergence. Thus, 
granted these equations, we may analyze them mathematically by regarding 
E (x ,  t )  as the superposition 

E (x) = E ( x’) S (X - x’) dx’ s 
of localized parts E (x’)S(x- x’), each of which moves according to (2.34) at the 
local group velocity with constant El@+, and each of which is surrounded by a 
forced velocity field 8, which, by (2.39) is irrotational and non-divergent every- 
where except at  x = x’. To avoid confusion, the wave energy will not be regarded 
as concentrated precisely at a point, but as distributed over a very small volume 
V .  The value of this approach is in the conceptual simplification of regarding a 
complicated wave train as made up of a lot of particles, each moving individually 
according to well defined laws. It is not necessary to justify the approximate 
equations in detail for each particle, but only for their superposition. 

3.2. The$ow round a three-dimensional wave packet 
The nature of the mean flow induced by a wave packet in a stationary medium 
follows at once from the remarks that it is entirely horizontal, non-divergent, and 
according to the circulation theorem (2.39) irrotational except where the wave 
energy density E is non-zero. Thus at each level separately it is the two-dimen- 
sional incompressibIe motion around a patch of vorticity concentrated at  the 
point x‘(t), and is instantaneously determined by the distribution of E. At large 
distances the velocities fall off as the inverse square, as the field due to a two- 
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dimensional dipole, and the integral of iiz over the whole horizontal plane is 
formally divergent. Nevertheless, there is a conversed quantity, the impulse, 
defined as half the dipole moment of the vorticity distribution (Batchelor 1967), 
which can justifiably be interpreted as the momentum associated with the patch. 
A t  each level, it is equal to the horizontal integral of khE/w+,  and equals the 
resultant of the external forces which would be required, if applied locally within 
V ,  to start the motion Uz (x) impulsively from rest. As the wave packet propagates 
upwards through the fluid, the impulse at  each level changes in sympathy, but 
the total integrated over all levels is constant. Thus, the total momentum 
associated with the wave packet is k,/w+ times the total wave energy. 

When the basic velocity u, does not vanish, the circulation in the absence of 
the wave packet will not, in general, vanish. But if the volume V occupied by 
the wave packet is small compared to the scale of variations of u,, it is clear that 
the flow around the packet approximates to that when uo is uniform. Viewed 
from the scale of uo, it appears singular at  the point X I ,  where there is a dipole of 
strength 

This dipole moves with the group velocity c appropriate to the wave-number k ,  
and it may also fluctuate slowly in strength as kh varies. The motions induced by 
this dipole throughout the flow u,, (x, t )  depend in a complicated manner on the 
distribution of basic vorticity n.V x u, (Lighthill 1957), but the effect of the 
wave packet is entirely summed up by its 'momentum' 

5 1 E d V .  w+ 

When this varies as the packet moves, it appears that the total momentum of 
the mean flow varies in some sense in sympathy. 

It is instructive also to introduce the possibility of some internal friction in 
the wave packet, so that (2.34) should be replaced by 

where D is the dissipation rate per unit volume, but if the logarithmic decrement 
D/(Eclw)  is small the other propagation characteristics and the mean flow will 
not be directly affected, Molecular viscosity would provide a suitable mechan- 
ism. Reworking (2.35)-(2.39)) we now have 

The last term describes mean circulation which can be permanently induced 
even in a uniform medium, when a passing wave packet is partially dissipated. 
A distributed residual of dipole moments is left after the packet is past, and the 
momentum earmarked to the dissipated part of the packet is transferred to the 
mean flow. 
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3.3. Radiation by a two-dimensional wave packet in a medium at rest 
If the whole flow field is two-dimensional (i.e. independent of y) the second-order 
mean motions induced by a wave train have quite different character. k, and 
iiho) are everywhere parallel to Ox, and Kelvin's circulation theorem (2.39) is 
trivially satisfied, each side vanishing identically for a horizontal circuit r. The 
only non-divergent one-dimensional velocity ii, is independent of x and presum- 
ably zero so the scale analysis leading to equations (2.28) and (2.29) must break 
down somewhere. 

Near the wave packet there will be a balance 

and, as the horizontal integral of the right-hand side does not vanish, there is a 
pressure difference 

across a two-dimensional wave packet. & 00 in this context means sufficiently 
far for the wave energy density E to be effectively zero. According to (2.30) and 
(2.31), small vertical velocities e2%@ are inevitably associated with changes in 
the pressure 3, and with the vertical forces and buoyancy flux in the wave 
packet, implying small horizontal convergences e2 (auk2)/ax). The associated 
horizontal velocities are indeed negligibly small, unless the convergence extends 
over a very large area. But this is exactly what is implied by ( 3 4 ,  with alpc,")/ax 
uniform and non-zero for an apparently infinite distance on either side of the 
wave packet. 

Clearly we must reconsider equations (2.28) and (2.29) when we are looking at 
motions distance 0 ( c 1 H )  from the wave packet, for on this scale the stratifica- 
tion is no longer sufficiently strong to enforce quasi-non-divergent horizontal 
motion. The wave packet has shrunk to a line of vertical dimension H ,  moving 
vertically with velocity y. OnIy the horizontal integral 

is significant in forcing the mean motion, which is as if a horizontal body force 
(a/ax){yP(z- yt)} about the Oy axis concentrated along x = 0 were applied to an 
otherwise undisturbed horizontally stratified mean flow. This causes a quasi- 
hydrostatic system of radiating internal gravity waves, of vertical scale H and 
timescale H/y ,  and hence of horizontal scale E-~N&O'H "7. The induced velocities 
are 0 (a2€) and nearly horizontal, the pressure and density fields everywhere 
being in hydrostatic balance. It is not easy to justify formally the omission of the 
vertical forces exerted by the wave packet and the buoyancy flux, but, unlike 
the horizontal forces they are easily negated by small localized vertical displace- 
ments, and the picture presented here appears to be plausible. 
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We will illustrate by considering the motion a t  large distances from a wave 
packet propagating in a uniform medium at rest ( N 2  = constant, uo = O), so that 
the vertical component of group velocity y is constant, and the wave energy dis- 
tribution can propagate upwards without change of shape. We will assume tho 
latter to be Gaussian 

A 
TLH E ( z , x , t )  = -exp- 

We introduce a scaled horizontal co-ordinate 

2 = EX 
and a stream function qh1), 

In terms off  the linearized equation of motion is 

where a term 

(3.7) 

(3.10) 

has been omitted, thus assuming hydrostatic balance, and 

6(2)dx = €-I. /Im 
We also have P = P(z-  yt) .  (3.11) 

Relative to axes moving vertically with velocity y, (3.10) and (3.11) have a steady 
formal solution 

where P (2, p) is the two-dimensional Fourier transform of P (2, z),  

(3.12) 

(3.13) 

The three-dimensional axisymmetric wave pattern produced by a disturbance 
moving vertically in a uniformly stratified liquid has been studied in detail by 
Warren (1960), Lighthill (1967) and Mowbray & Rarity (1967), using methods 
similar to the present one, though without making the hydrostatic approxima- 
tion. Some discussion of the two-dimensional case has also been given by Rarity 
(1967). These authors have shown how, at large distances from the source, the 
integral they obtained corresponding to (3.12) is dominated by those wave- 
numbers €2, p for which the denominator vanishes. In  a nearly horizontal 
direction in the x, z plane the integrand is small unless 

- z / x ,  (3.14) 
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in which case it approximates to (3.12). Care must be taken to avoid the singu- 
larity in the way corresponding to an outgoing wave, by taking the denominator 
as 

where CT is small and positive. This is equivalent to letting H be complex, having 
a small imaginary part with sign the same as p near H = - y,u2/iV0), but with 
opposite sign near + ypZ/N(O). 

( ~ , L L + ~ ~ ) ~ , u ~ - R ~ N ( ~ ) ~ ,  

1 

1 

c 

71 
1: 

FIGURE 1. One-half of the symmetrical wake behind a moving wave packet, as given by 
contours of 

I ( E , v )  = - ~ h e x p ( - 1 \ ~ ) c o s ( 5 h ~ + ~ h ) d r h .  

The line A B  shows approximately the region occupied by the packet, the energy density 
being proportionaI to exp (-$6) and concentrated on 6 = 0. 

Now (3.12) may be integrated immediately with respect to K,  and using (3.13) 
then with respect to p. We have 

where 
P m  

(3.15) 

(3.16) 

Contours of a ) ( Z ,  z )  are shown in figure 1. The abscissa is scaled by a factor 
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2y/Nc0)H relative to the ordinate. 90% of the wave energy lies within the region 
I 6 I - 0, 7 < 3, indicated by the vertical line near the origin. 

(3.17) 

is non-zero in the viciility of the wave packet, but 732) is discontinuous across it. 
As Z-+ 0 + we have, after some manipulation 

(3.18) 

with an equal magnitude but opposite sign as 2 --f 0 - . This shows that there is 
indeed a pressure drop across the packet of magnitude given by (3.5). 

Also from (3.17) we may obtain 
- 

(3.19) 

showing that at each level the wave momentum is indeed related to the wave 
energy as in $3.2. However, now the horizontal velocities are 0 ( 8 )  everywhere, 
and the momentum resides predominantly in the radiation field at large distances 
rather than near the wave packet. When 2 = O ( E ) ,  (3.12) cannot be used to 
determine g2, which is 0 (€2) there. The vertical forces must be taken into account 
but the additional velocities are essentially of order a2e2, whereas the total 
induced horizontal velocity is 0 (a2€), (3.17). 

The essential difference between the two- and three-dimensional cases is that 
in the former all the forces exerted by the packet on the mean flow can be bal- 
anced (locally at  least) by changes in pressure which involve only small vertical 
displacements in the strong basic stratification. In the latter, the rotational part 
of the horizontal forces causes velocities O(a2e2) directly in the vicinity of the 
wave packet. 

4. Other considerations 
4.1. A general argument 

The association of a momentum equal to klwf  times the wave energy with a wave 
packet is strongly suggested by an argument due to Professor R. W. Stewart, to 
whom the author is very grateful for permission to reproduce it here. 

Consider a wave packet being generated by a system of external forces f of 
order a, moving rigidly parallel to Ox relative to a frame of reference in which the 
fluid is basically at  rest with the intrinsic phase velocity 

C$ = w+/k (4.1) 

appropriate to that direction. Such a system of forces could be exerted by a wavy 
rigid boundary 

x = h(x, t )  = asexp{- (x-~,+t)~/L2}sin~-lk(z-~Cp+t).  (4.2) 
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The forces are everywhere normal to the boundary (in a perfect fluid) and may 
thus have a resultant P of order u2 in the Ox direction. This force P may indeed 
be calculated by asserting that the rate of working to move the boundary is 
exactly w = Fcp', (4.3) 

and in a conservative system this must be equal to the rate of increase of energy 
of the wave packet. Now, in a frame of reference in which the basic velocity u,, 
vanishes, we may estimate changes in wave energy by multiplying the sinusoidal 
external forces f (of order a )  by the perturbation velocities (also of order a), and 
from a linearized theory alone we obtain 

where E is the wave energy density in the usual (external) sense (Eckart 1960; 
Bretherton & Garrett 1968), and the integration is over the volume of fluid in 
which waves have been significantly excited. From (4.3) and (4.4) 

(4.5) 

Thus there is a resultant force exerted by the boundary parallel to itself, equal 
to the component of wave-number in that direction, divided by the intrinsic 
frequency, times the rate of supply of wave energy, and unless the reaction of the 
fluid is such as to negate it, the momentum of the fluid must increase at  the same 
rate. 

This argument is very general, and could apparently be applied to all kinds 
of mechanical systems, provided it is possible to imagine a wave packet generated 
in a conservative manner by a rigidly moving system of forces. It may sometimes 
be used to relate the momentum transfer to the wave energy flux in the interior 
of a system. Nevertheless, this apparent generality could be misleading if each 
individual case is not looked at  carefully. The reasoning depends on a system of 
forces moving relative to the fluid in such a manner that the energy transferred 
to the fluid is equal to the work done by the agency moving the forces. Wind- 
generated waves on the surface of water, for example, clearly do not satisfy this 
condition, neither do transverse body waves in an elastic solid. It appears to be 
necessary that there be no tangential stress on the boundary across which the 
forces are applied, or no forces in the direction of their motion if they are applied 
in the interior. Furthermore, if we are to estimate the momentum transfer in the 
interior of a perfect fluid, before the fluid on one side of a wavy surface may be 
replaced in imagination by a rigid body, we must be sure that it deviates from 
plane everywhere by no more than O(u2),  and that there is no mass transport 
across it (even to 0 (u2)) .  Otherwise the zero-order normal stress has to be included 
in the reckoning. 

For int,ernal gravity waves, profound and subtle questions arise if we attempt 
to apply the argument to surfaces moving in directions other than horizontal. 
Gradients of basic pressure along the mean position of the surface make it 
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difficult to average quantities unambiguously over a wavelength. If second-order 
horizontal mean velocities are really intrinsic to trains of internal gravity waves 
we cannot be sure what forces are occasioned when they are not permitted to 
cross our specified surface. Finally, any momentum imparted to the fluid in the 
vertical direction is rapidly counteracted by buoyancy forces, so it never appears 
as particle motion. Nevertheless, the argument appears to be correct for wave 
momentum in a horizontal direction, and its elegance demands further research 
into the precise conditions for its validity. 

4.2. The exceptional case 
Finally, we consider the case proposed by Garrett (1968), in which the basic 
vertical velocities wo are of order unity, but with error 0 (e2) are independent of 
horizontal position. N(0)2 is still horizontally uniform, satisfying 

but as far as the induced mean velocities U2 are concerned, all the scaling con- 
siderations of $2 continue to hold. Conservation of wave action (2.34) is still 
valid, though u will change with time in sympathy with N(O). Horizontal circuits 
r remain horizontal and Kelvin’s circulation theorem (2.39) goes through as 
before. The only change comes when we consider conservation of energy ($2.5). 

Remembering that at all times an arbitrary function of z ,  t may be subtracted 
from the buoyancy u without affecting the dynamics, provided a corresponding 
function is subtracted from the pressure, the equations of motion for the complete 
mean velocities 

are, to order u2eo, 
u = uo+ii2 

V.Uii)= 0. 
Multiplying (4.7) by 3): 

(4.9) 

a w p  k2 E 
= -V.[(uhkh-Gw$o) k2 )w”- -c+ ) +Vu,: ( k,-c+ ,”+ ) az mu+ 7’. (4.10) 

When manipulating the Reynolds stress terms we have to remember that uo 
now has a vertical component and N(O) depends on time. Thus two additional 
terms arise in (2.42), one from (aulat), and one from wo(aw/az),. Together they 
add 
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to  the right-hand side of (2.42) and, using (4.6)) 

Thus two additional terms arise in the energy equation, a rate of working 
@(*)w,, by the mean buoyancy forces against the basic vertical velocities and the 
term BE (aw,/az) on the right-hand side. There does not seem to be any simple 
way of combining these to give a conservation equation, for to estimate 
we need (4.8), which in turn involves So), which must be computed from (2.26) 
and i?W. Both these terms involve carrying the approximations in a quasi- 
sinusoidal wave train to a higher-order than so far considered. It may be possible 
to do so, but the algebra is complicated. 

This situation need cause no concern. The second-order mean motion is still 
horizontal and completely determined by (2.28) and (2.29), and changes in wave 
energy follow from (2.39). The expansion of the complete energy in powers of e 
apparently does not lead to an approximate equation involving only those 
quantities calculable from (2.29). However, this was also true in 52.5) only there 
the potential energy terms for the mean flow couId be subtracted off identically 
and consistently ignored, even though they could not be estimated without 
going to a higher-order in e,  Given order unity vertical velocities in the basic 
state this does not appear to be possible, even in the complete absence of waves. 
This example illustrates particularly the ambiguous nature of energy density in 
all fluid motions in that the amount which is available for conversion into kinetic 
form depends on the constraints imposed. If the latter are in some sense approxi- 
mate, an approximate form of the available energy may be appropriate, but 
there is no a priori guarantee that this be so, and in this case it appears that it is 
not. The primary conclusions of this paper are unimpaired. 

This work was supported by the National Science Foundation under grants 
GA-1455 and GA-849. The author is profoundly grateful to Dr C. J. R. Garrett and 
Professor R. W. Stewart for many prolonged discussions over the issues discussed 
in this paper. 
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